Search results for "Simple cubic lattice"
showing 5 items of 5 documents
Aging effects in glassy polymers: a Monte Carlo study
1996
Abstract By means of dynamic Monte Carlo simulation the physical aging of a glassy polymer melt is studied. The melt is simulated by a coarse-grained lattice model, the bond-fluctuation model, on a simple cubic lattice. In order to generate glassy freezing an energy is associated with long bonds, which leads to a competition between the energetically favored bond stretching and the local density of the melt at low temperatures. The development of this competition during the cooling process strongly slows down the structural relaxation and makes the melt freeze in an amorphous structure as soon as the internal relaxation time matches the time scale of the cooling rate. Therefore the model ex…
Competition between submonolayer ordering and multilayer adsorption: Studies of simple lattice gas models
1986
Abstract We model condensation of adatoms at a substrate surface by a semi-infinite simple cubic lattice gas system. While in the bulk there is just a nearest-neighbour attractive interaction, in the first layer adjacent to the surface we allow for a periodic potential due to the substrate with a period of two lattice spacings, or for a next-nearest-neighbour repulsive interaction mediated by the substrate. Hence order-disorder phenomena may occur in the first layer, while only gas-liquid condensation transitions can occur in layers further away from the substrate surface. The ground-state phase diagrams of this model are obtained exactly, while the behaviour at nonzero temperatures is obta…
Lattice gas models for multilayer adsorption: variation of phase diagrams with the strength of the substrate potential
1990
Abstract The simple cubic lattice gas model with nearest-neighbor attractive interaction is considered for the case where the potential V ( z ), that an adatom at a distance z from the surface experiences due to the substrate, is V ( z ) = − A / z 3 . Exact ground state phase diagrams are obtained for different A , while the behavior at nonzero temperatures is studied both by Monte Carlo simulations and the molecular field approximation. We show that the detailed sequence of the layering transitions in the first few layers depends very strongly on the strength of the substrate potential: for strong potentials individual first-order layering transitions in layers 1, 2, 3, …, while for interm…
Breaking of SU(4) symmetry and interplay between strongly correlated phases in the Hubbard model
2016
We study the thermodynamic properties of four-component fermionic mixtures described by the Hubbard model using the dynamical mean-field-theory approach. Special attention is given to the system with SU(4)-symmetric interactions at half filling, where we analyze equilibrium many-body phases and their coexistence regions at nonzero temperature for the case of simple cubic lattice geometry. We also determine the evolution of observables in low-temperature phases while lowering the symmetry of the Hamiltonian towards the two-band Hubbard model. This is achieved by varying interflavor interactions or by introducing the spin-flip term (Hund's coupling). By calculating the entropy for different s…
Entropy theory and glass transition: A test by Monte Carlo simulation
1997
This article reviews the results of a test of the Gibbs-DiMarzio theory by Monte Carlo Simulation. The simulation employed the bond-fluctuation model on a simple cubic lattice. This model incorporates two kinds of interactions: the excluded volume interaction among all monomers of the melt and an internal energy of the chains, which favors large bonds and makes the chains stiffen with decreasing temperature. The stiffening of the chains leads to an increase of their volume requirements, which competes with the packing constraints at low temperatures. This competition strongly slows down the structural relaxation of the melt and induces the glassy behavior. The model therefore takes into acc…